Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
It provides a highly accurate approximation formula for any PDF or probability mass function of a distribution, based on the moment generating function. There is also a formula for the CDF of the distribution, proposed by Lugannani and Rice (1980).
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
where is the normal cumulative distribution function. The derivation of the formula is provided in the Talk page. The partial expectation formula has applications in insurance and economics, it is used in solving the partial differential equation leading to the Black–Scholes formula.
In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function.The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential (e.g. sub-Gaussian).
Other generating functions of random variables include the moment-generating function, the characteristic function and the cumulant generating function. The probability generating function is also equivalent to the factorial moment generating function , which as E [ z X ] {\displaystyle \operatorname {E} \left[z^{X}\right]} can also be ...
It is also possible to write down the moment-generating function even in the noncentral case (essentially the nth power of Craig (1936) [22] equation 10) although the probability density becomes an infinite sum of Bessel functions.
In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis.. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.