Search results
Results from the WOW.Com Content Network
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
The heat that is added to the gas goes only partly into heating the gas, while the rest is transformed into the mechanical work performed by the piston. In the first, constant-volume case (locked piston), there is no external motion, and thus no mechanical work is done on the atmosphere; C V is used. In the second case, additional work is done ...
ĉ V is the dimensionless specific heat capacity at constant volume, approximately 3 / 2 for a monatomic gas, 5 / 2 for diatomic gas, and 3 for non-linear molecules if we treat translations and rotations classically and ignore quantum vibrational contribution and electronic excitation.
Specific heat capacity ... and is the ideal gas constant. It can also be ... to represent the specific gas constant by the symbol R.
The specific heat capacity of a substance, especially a gas, may be significantly higher when it is allowed to expand as it is heated (specific heat capacity at constant pressure) than when it is heated in a closed vessel that prevents expansion (specific heat capacity at constant volume).
Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows:
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant ), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore ...