Search results
Results from the WOW.Com Content Network
Right ascension and declination as seen on the inside of the celestial sphere. The primary direction of the system is the March equinox, the ascending node of the ecliptic (red) on the celestial equator (blue). Right ascension is measured eastward up to 24 h along the celestial equator from the primary direction.
An object's location expressed in the equatorial coordinate system can be transformed into the galactic coordinate system. In these equations, α is right ascension, δ is declination. NGP refers to the coordinate values of the north galactic pole and NCP to those of the north celestial pole. [5]
In this case, the longitude is also called the right ascension of the ascending node (RAAN). The angle is measured eastwards (or, as seen from the north, counterclockwise) from the FPA to the node. [2] [3] An alternative is the local time of the ascending node (LTAN), based on the local mean time at which the spacecraft crosses the equator.
Model of the equatorial coordinate system. Declination (vertical arcs, degrees) and hour angle (horizontal arcs, hours) is shown. For hour angle, right ascension (horizontal arcs, degrees) can be used as an alternative. The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects.
The following table lists the common coordinate systems in use by the astronomical community. The fundamental plane divides the celestial sphere into two equal hemispheres and defines the baseline for the latitudinal coordinates, similar to the equator in the geographic coordinate system.
Right ascension and declination as seen on the inside of the celestial sphere. The primary direction of the system is the vernal equinox, the ascending node of the ecliptic (red) on the celestial equator (blue). Declination is measured northward or southward from the celestial equator, along the hour circle passing through the point in question.
The location of an object in space can be defined in terms of right ascension and declination which are measured from the vernal equinox and the celestial equator. Right ascension and declination are spherical coordinates analogous to longitude and latitude, respectively.
For example, when the Sun is at an elevation of 10°, it appears to be at 10.1°. The Sun's declination can be used, along with its right ascension, to calculate its azimuth and also its true elevation, which can then be corrected for refraction to give its apparent position. [2] [14] [18]