Ads
related to: fano plane triangle formula worksheet
Search results
Results from the WOW.Com Content Network
The Fano plane is an example of an (n 3)-configuration, that is, a set of n points and n lines with three points on each line and three lines through each point. The Fano plane, a (7 3)-configuration, is unique and is the smallest such configuration. [11]
The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2.
The order of a finite projective plane is n = k – 1, that is, one less than the number of points on a line. All known projective planes have orders that are prime powers. A projective plane of order n is an ((n 2 + n + 1) n + 1) configuration. The smallest projective plane has order two and is known as the Fano plane.
The Fano plane, discussed below, is denoted by PG(2, 2). The third example above is the projective plane PG(2, 3). The Fano plane. Points are shown as dots; lines are shown as lines or circles. The Fano plane is the projective plane arising from the field of two elements. It is the smallest projective plane, with only seven points and seven lines.
The Fano plane. This particular projective plane is sometimes called the Fano plane. If any of the lines is removed from the plane, along with the points on that line, the resulting geometry is the affine plane of order 2. The Fano plane is called the projective plane of order 2 because it is unique (up to
Any graph (which need not be simple; loops and multiple edges are allowed) is a uniform incidence structure with two points per line. For these examples, the vertices of the graph form the point set, the edges of the graph form the line set, and incidence means that a vertex is an endpoint of an edge.
The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]
The adjunction formula implies that K D = (K X + D)| D = (−(n+1)H + deg(D)H)| D, where H is the class of a hyperplane. The hypersurface D is therefore Fano if and only if deg(D) < n+1. More generally, a smooth complete intersection of hypersurfaces in n-dimensional projective space is Fano if and only if the sum of their degrees is at most n.
Ads
related to: fano plane triangle formula worksheet