Search results
Results from the WOW.Com Content Network
Radical addition of hydrogen bromide is a valuable synthetic technique for anti-Markovnikov carbon substitution, [citation needed] but free-radical addition does not occur with the other hydrohalic acids. Radical formation from HF, HCl, or HI is extremely endothermic and chemically disfavored.
In organic chemistry, free-radical halogenation is a type of halogenation. This chemical reaction is typical of alkanes and alkyl -substituted aromatics under application of UV light . The reaction is used for the industrial synthesis of chloroform (CHCl 3 ), dichloromethane (CH 2 Cl 2 ), and hexachlorobutadiene .
Halogenation of saturated hydrocarbons is a substitution reaction. The reaction typically involves free radical pathways. The regiochemistry of the halogenation of alkanes is largely determined by the relative weakness of the C–H bonds. This trend is reflected by the faster reaction at tertiary and secondary positions.
N-Bromosuccinimide or NBS is a chemical reagent used in radical substitution, electrophilic addition, and electrophilic substitution reactions in organic chemistry. NBS can be a convenient source of Br •, the bromine radical. [1]
The reaction mechanism for an alkene bromination can be described as follows. In the first step of the reaction, a bromine molecule approaches the electron-rich alkene carbon–carbon double bond. The bromine atom closer to the bond takes on a partial positive charge as its electrons are repelled by the electrons of the double bond.
Alkenes react with percarboxylic acids and even hydrogen peroxide to yield epoxides: RCH=CH 2 + RCO 3 H → RCHOCH 2 + RCO 2 H. For ethylene, the epoxidation is conducted on a very large scale industrially using oxygen in the presence of silver-based catalysts: C 2 H 4 + 1/ 2 O 2 → C 2 H 4 O. Alkenes react with ozone, leading to the scission ...
The reaction details following the usual patterns of electrophilic aromatic substitution: RC 6 H 5 + Br 2 → RC 6 H 4 Br + HBr. A prominent application of this reaction is the production of tetrabromobisphenol-A from bisphenol-A. Free-radical substitution with bromine is commonly used to prepare organobromine compounds.
In organic chemistry, a radical-substitution reaction is a substitution reaction involving free radicals as a reactive intermediate. [1] The reaction always involves at least two steps, and possibly a third. In the first step called initiation (2,3), a free radical is created by homolysis.