Search results
Results from the WOW.Com Content Network
The low solubility of silver iodide and lead iodide reflects the covalent character of these metal iodides. A test for the presence of iodide ions is the formation of yellow precipitates of these compounds upon treatment of a solution of silver nitrate or lead(II) nitrate. [2] Aqueous solutions of iodide salts dissolve iodine better than pure ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 16 February 2025. This article is about the chemical element. For other uses, see Iodine (disambiguation). Chemical element with atomic number 53 (I) Iodine, 53 I Iodine Pronunciation / ˈ aɪ ə d aɪ n, - d ɪ n, - d iː n / (EYE -ə-dyne, -din, -deen) Appearance lustrous metallic gray solid ...
Manganese(II) iodide is the chemical compound composed of manganese and iodide with the formula MnI 2 (H2O) n. The tetrahydrate is a pink solid while the anhydrous derivative is beige. [2] Both forms feature octahedral Mn centers. Unlike MnCl 2 (H 2 O) 4 and MnBr 2 (H 2 O) 4 which are cis, MnI 2 (H 2 O) 4 is trans. [3]
Similarly, solubilities in water of predominantly ionic iodides (e.g. potassium and calcium) are the greatest among ionic halides of that element, while those of covalent iodides (e.g. silver) are the lowest of that element. In particular, silver iodide is very insoluble in water and its formation is often used as a qualitative test for iodine. [7]
Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid . Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas .
For prolonged titrations, it is advised to add dry ice to the titration mixture to displace air from the Erlenmeyer flask so as to prevent the aerial oxidation of iodide to iodine. Standard iodine solution is prepared from potassium iodate and potassium iodide, which are both primary standards: IO − 3 + 8 I − + 6 H + → 3 I − 3 + 3 H 2 O
Sodium iodide (chemical formula NaI) is an ionic compound formed from the chemical reaction of sodium metal and iodine. Under standard conditions, it is a white, water-soluble solid comprising a 1:1 mix of sodium cations (Na +) and iodide anions (I −) in a crystal lattice. It is used mainly as a nutritional supplement and in organic chemistry.
Organoiodine chemistry is the study of the synthesis and properties of organoiodine compounds, or organoiodides, organic compounds that contain one or more carbon–iodine bonds. They occur widely in organic chemistry, but are relatively rare in nature.