Search results
Results from the WOW.Com Content Network
Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [ 1 ]
In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the a target population.
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
The method of inverse probability (assigning a probability distribution to an unobserved variable) is called Bayesian probability, the distribution of data given the unobserved variable is the likelihood function (which does not by itself give a probability distribution for the parameter), and the distribution of an unobserved variable, given ...
inverse-variance weighting, also known as analytic weights, [24] is when each element is assigned a weight that is the inverse of its (known) variance. [ 25 ] [ 9 ] : 187 When all elements have the same expectancy, using such weights for calculating weighted averages has the least variance among all weighted averages.
In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.
It is characterised by its probability density function, within the support of the distribution, being proportional to the reciprocal of the variable. The reciprocal distribution is an example of an inverse distribution, and the reciprocal (inverse) of a random variable with a reciprocal distribution itself has a reciprocal distribution.