Ads
related to: modular arithmetic identities practice equations and solutions 6th gradersteacherspayteachers.com has been visited by 100K+ users in the past month
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Projects
Search results
Results from the WOW.Com Content Network
The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00.
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
In that sense a modular equation becomes the equation of a modular curve. Such equations first arose in the theory of multiplication of elliptic functions (geometrically, the n 2 -fold covering map from a 2- torus to itself given by the mapping x → n · x on the underlying group) expressed in terms of complex analysis .
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
Srinivasa Ramanujan is credited with discovering that the partition function has nontrivial patterns in modular arithmetic. For instance the number of partitions is divisible by five whenever the decimal representation of n {\displaystyle n} ends in the digit 4 or 9, as expressed by the congruence [ 7 ] p ( 5 k + 4 ) ≡ 0 ( mod 5 ...
Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).
Ads
related to: modular arithmetic identities practice equations and solutions 6th gradersteacherspayteachers.com has been visited by 100K+ users in the past month