Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
The first isolation of deoxyribonucleic acid (DNA) was done in 1869 by Friedrich Miescher. [1] DNA extraction is the process of isolating DNA from the cells of an organism isolated from a sample, typically a biological sample such as blood, saliva, or tissue. It involves breaking open the cells, removing proteins and other contaminants, and ...
Although RNA enzymes were discovered before DNA enzymes, the latter have some distinct advantages. DNA is more cost-effective, and DNA can be made with longer sequence length and can be made with higher purity in solid-phase synthesis. [30] Several studies have shown the usage of DNAzymes to inhibit influenza A and B virus replication in host ...
The process of DNA denaturation can be used to analyze some aspects of DNA. Because cytosine / guanine base-pairing is generally stronger than adenine / thymine base-pairing, the amount of cytosine and guanine in a genome is called its GC-content and can be estimated by measuring the temperature at which the genomic DNA melts. [ 2 ]
A chaotrope denatures biomolecules by disrupting the shell of hydration around them. This allows positively charged ions to form a salt bridge between the negatively charged silica and the negatively charged DNA backbone in high salt concentration. The DNA can then be washed with high salt and ethanol, and ultimately eluted with low salt.
Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase, is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. [1] [2] It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates (or triphosphates depending on the class of RNR).
The schematic diagram indicates the roles of insufficient DNA repair in aging and cancer, and the role of apoptosis in cancer prevention. An excess of naturally occurring DNA damage, due to inherited deficiencies in particular DNA repair enzymes, can cause premature aging or increased risk for cancer (see DNA repair-deficiency disorder).
In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.