Search results
Results from the WOW.Com Content Network
Upper limits derived with the CLs method always contain the zero value of the parameter and hence the coverage probability at this point is always 100%. The definition of CLs does not follow from any precise theoretical framework of statistical inference and is therefore described sometimes as ad hoc.
The Bekenstein bound limits the amount of information that can be stored within a spherical volume to the entropy of a black hole with the same surface area. Thermodynamics limit the data storage of a system based on its energy, number of particles and particle modes. In practice, it is a stronger bound than the Bekenstein bound.
The two plastic limit theorems apply to any elastic-perfectly plastic body or assemblage of bodies. Lower limit theorem: If an equilibrium distribution of stress can be found which balances the applied load and nowhere violates the yield criterion, the body (or bodies) will not fail, or will be just at the point of failure. [2] Upper limit theorem:
In statistical mechanics, a universality class is a collection of mathematical models which share a single scale-invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached.
The points plotted as part of an ogive are the upper class limit and the corresponding cumulative absolute frequency [2] or cumulative relative frequency. The ogive for the normal distribution (on one side of the mean) resembles (one side of) an Arabesque or ogival arch, which is likely the origin of its name.
According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...
The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. [1] The classical limit is used with physical theories that predict non-classical behavior.
In statistical mechanics, Maxwell–Boltzmann statistics describes the distribution of classical material particles over various energy states in thermal equilibrium. It is applicable when the temperature is high enough or the particle density is low enough to render quantum effects negligible.