Search results
Results from the WOW.Com Content Network
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis.
Kirchhoff's diffraction formula; Klein–Gordon equation; Korteweg–de Vries equation; Landau–Lifshitz–Gilbert equation; Lane–Emden equation; Langevin equation; Levy–Mises equations; Lindblad equation; Lorentz equation; Maxwell's equations; Maxwell's relations; Newton's laws of motion; Navier–Stokes equations; Reynolds-averaged ...
Numerical relativity is the sub-field of general relativity which seeks to solve Einstein's equations through the use of numerical methods. Finite difference, finite element and pseudo-spectral methods are used to approximate the solution to the partial differential equations which arise. Novel techniques developed by numerical relativity ...
Translation by Megh Nad Saha in The Principle of Relativity: Original Papers by A. Einstein and H. Minkowski, University of Calcutta, 1920, pp. 1–34: :Introduced the special theory of relativity. Reconciled Maxwell's equations for electricity and magnetism with the laws of mechanics by introducing major changes to mechanics close to the speed ...
Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of ...
The nonlinearity of the EFE distinguishes general relativity from many other fundamental physical theories. For example, Maxwell's equations of electromagnetism are linear in the electric and magnetic fields , and charge and current distributions (i.e. the sum of two solutions is also a solution); another example is Schrödinger's equation of ...
List of equations in classical mechanics; Table of thermodynamic equations; List of equations in wave theory; List of relativistic equations; List of equations in fluid mechanics; List of electromagnetism equations; List of equations in gravitation; List of photonics equations; List of equations in quantum mechanics; List of equations in ...
The covariant formulation (on spacetime rather than space and time separately) makes the compatibility of Maxwell's equations with special relativity manifest. Maxwell's equations in curved spacetime, commonly used in high-energy and gravitational physics, are compatible with general relativity.