Search results
Results from the WOW.Com Content Network
If f is a function, then its derivative evaluated at x is written ′ (). It first appeared in print in 1749. [3] Higher derivatives are indicated using additional prime marks, as in ″ for the second derivative and ‴ for the third derivative. The use of repeated prime marks eventually becomes unwieldy.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
This gives the residue for A when x = −1. Next, substitute this value of x into the fractional expression, but without D 1. Put this value down as the value of A. Proceed similarly for B and C. D 2 is x + 2; For the residue B use x = −2. D 3 is x + 3; For residue C use x = −3. Thus, to solve for A, use x = −1 in the expression but ...
3.1 Proof from derivative definition and limit properties. 3.2 Proof using implicit differentiation. ... The quotient rule states that the derivative of h(x) is ...
The logarithmic derivative provides a simpler expression of the last form, as well as a direct proof that does not involve any recursion. The logarithmic derivative of a function f , denoted here Logder( f ) , is the derivative of the logarithm of the function.
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series:. If or if the limit does not exist, then = diverges.. Many authors do not name this test or give it a shorter name.
The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R n. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold