enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.

  3. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  4. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    This is a list of most likely gravitationally rounded objects (GRO) of the Solar System, which are objects that have a rounded, ellipsoidal shape due to their own gravity (but are not necessarily in hydrostatic equilibrium). Apart from the Sun itself, these objects qualify as planets according to common geophysical definitions of that

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s /r is roughly 4 parts in a

  6. Solar rotation - Wikipedia

    en.wikipedia.org/wiki/Solar_rotation

    At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Next, one would consider only the Sun's gravity until the trajectory reaches the neighborhood of Mars. During this stage, the transfer orbit model is appropriate. Finally, only Mars's gravity is considered during the final portion of the trajectory where Mars's gravity dominates the spacecraft's behavior.

  8. Sun - Wikipedia

    en.wikipedia.org/wiki/Sun

    In contrast, it takes only 2.3 seconds for neutrinos, which account for about 2% of the total energy production of the Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter, the time scale of energy transport in the Sun is longer, on the order of 30,000,000 ...

  9. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}