Search results
Results from the WOW.Com Content Network
The sodium–potassium pump, a critical enzyme for regulating sodium and potassium levels in cells. Sodium ions (Na +) are necessary in small amounts for some types of plants, [1] but sodium as a nutrient is more generally needed in larger amounts [1] by animals, due to their use of it for generation of nerve impulses and for maintenance of electrolyte balance and fluid balance.
The sodium channel selectivity filter is composed of a single residue in each of the four pore-loops of the four functional domains. These four residues are known as the DEKA motif. [52] The permeation rate of sodium through the sodium channel is determined by a four carboxylate residues, the EEDD motif, which make up the outer charged ring. [52]
Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the sodium ion Na +. They are the main channels involved in action potential of excitable cells.
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
The epithelial sodium channel (ENaC), (also known as amiloride-sensitive sodium channel) is a membrane-bound ion channel that is selectively permeable to sodium ions (Na +).It is assembled as a heterotrimer composed of three homologous subunits α or δ, β, and γ, [2] These subunits are encoded by four genes: SCNN1A, SCNN1B, SCNN1G, and SCNN1D.
Alcohol inhibits sodium–potassium pumps in the cerebellum and this is likely how it corrupts cerebellar computation and body coordination. [24] [25] The distribution of the Na +-K + pump on myelinated axons in the human brain has been demonstrated to be along the internodal axolemma, and not within the nodal axolemma as previously thought. [26]
Sodium's electrochemical gradient is established by the Na/K-ATPase, which is an ATP-dependent enzyme. Since NKCC proteins use sodium's gradient, their activity is indirectly dependent on ATP; for this reason, NKCC proteins are said to move solutes by way of secondary active transport .
The 3D structure of this channel at closed state was elucidated after the crystallography study by Bass et al. [74] which showed that at resolution of 3.9 Å this 31kDa protein is an homoheptamer forming a channel with 80 Å of diameter and 120 Å in length, each subunit contains three transmembrane domains (TM1, TM2, and TM3) with the N ...