Search results
Results from the WOW.Com Content Network
The process, called "normalize and temper", is used frequently on steels such as 1045 carbon steel, or most other steels containing 0.35 to 0.55% carbon. These steels are usually tempered after normalizing, to increase the toughness and relieve internal stresses. This can make the metal more suitable for its intended use and easier to machine. [9]
The final result of exactly how hard the steel becomes depends on the amount of carbon present in the metal. Only steel that is high in carbon can be hardened and tempered. If a metal does not contain the necessary quantity of carbon, then its crystalline structure cannot be broken, and therefore the physical makeup of the steel cannot be altered.
This is done by heating the material to a certain temperature, depending on the material. This produces a harder material by either surface hardening or through-hardening varying on the rate at which the material is cooled. The material is then often tempered to reduce the brittleness that may increase from the quench hardening process. Items ...
In this condition, these steels find many useful general applications where mild corrosion resistance is required. Also, with the higher carbon range in the hardened and lightly tempered condition, tensile strength of about 1,600 MPa (230 ksi) may be developed with lowered ductility. A common example of a Martensitic stainless steel is X46Cr13.
In both pure metals and many alloys that cannot be heat treated, annealing is used to remove the hardness caused by cold working. The metal is heated to a temperature where recrystallization can occur, thereby repairing the defects caused by plastic deformation. In these metals, the rate of cooling will usually have little effect.
Since quenching can be difficult to control, many steels are quenched to produce an overabundance of martensite, then tempered to gradually reduce its concentration until the preferred structure for the intended application is achieved. The needle-like microstructure of martensite leads to brittle behavior of the material.
W-group tool steel gets its name from its defining property of having to be water quenched. W-grade steel is essentially high carbon plain-carbon steel.This group of tool steel is the most commonly used tool steel because of its low cost compared to others.
post-transition metals, i.e. aluminium, gallium, indium, thallium, tin, lead, and bismuth. metalloids, e.g. silicon, germanium, arsenic, antimony and tellurium. Homogeneous and heterogeneous solid solutions of metals, and interstitial compounds such as the carbides and nitrides are excluded under this definition. However, interstitial ...