Search results
Results from the WOW.Com Content Network
The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types.
Mesenchyme (/ ˈ m ɛ s ə n k aɪ m ˈ m iː z ən-/ [1]) is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. [2] [3] The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo. [4]
Mesoderm embryonic tissues (paraxial mesoderm, intermediate mesoderm, lateral plate mesoderm and notochord). Also showing the neural tube and the yolk sac . Paraxial mesoderm
The neural crest is a ridge-like structure that is formed transiently between the epidermal ectoderm and neural plate during vertebrate development. Neural crest cells originate from this structure through the epithelial-mesenchymal transition, and in turn give rise to a diverse cell lineage—including melanocytes, craniofacial cartilage and bone, smooth muscle, dentin, peripheral and enteric ...
The epithelial liver cords and biliary system growing out into the septum transversum differentiate into parenchyma. Hematopoietic cells (present in the liver in greater numbers before birth than afterward), Kupffer cells, and connective tissue cells originate in the mesoderm. The pancreas develops from a ventral bud and a dorsal bud that later ...
The face and neck development of the human embryo refers to the development of the structures from the third to eighth week that give rise to the future head and neck.They consist of three layers, the ectoderm, mesoderm and endoderm, which form the mesenchyme (derived form the lateral plate mesoderm and paraxial mesoderm), neural crest and neural placodes (from the ectoderm). [1]
All of the organs that rise from the ectoderm such as the nervous system, teeth, hair and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. [8] Several signals mediate the organogenesis of the ectoderm such as: FGF , TGFβ , Wnt , and regulators from the hedgehog family .
Mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage cells), myocytes (muscle cells) and adipocytes (fat cells which give rise to marrow adipose tissue).