Search results
Results from the WOW.Com Content Network
Ab Initio gene prediction is an intrinsic method based on gene content and signal detection. Because of the inherent expense and difficulty in obtaining extrinsic evidence for many genes, it is also necessary to resort to ab initio gene finding, in which the genomic DNA sequence alone is systematically searched for certain tell-tale signs of protein-coding genes.
Generalization of positional cloning techniques in this manner is also known as positional gene discovery. Positional cloning is an effective method to isolate disease genes in an unbiased manner and has been used to identify disease genes for Duchenne muscular dystrophy, Huntington's disease, and cystic fibrosis. However, complications in the ...
Low-resolution physical mapping is typically capable of resolving DNA ranging from one base pair to several mega bases. In this category, most mapping methods involve generating a somatic cell hybrid panel, which is able to map any human DNA sequences, the gene of interest [clarification needed], to specific chromosomes of animal cells, such as those of mice and hamsters. [4]
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
Before the candidate-gene approach was fully developed, various other methods were used to identify genes linked to disease-states. These methods studied genetic linkage and positional cloning through the use of a genetic screen, and were effective at identifying relative risk genes in Mendelian diseases.
Sequence similarity based methods. They consist in the identification of homologous sequences with known DNA binding sites, or by aligning them with query proteins. Their performance is usually low because the DNA binding sequences are less conserved. Structure based methods. They employ the three-dimensional structural information of proteins ...
DNA barcoding is a method of species identification using a short section of DNA from a specific gene or genes. The premise of DNA barcoding is that by comparison with a reference library of such DNA sections (also called "sequences"), an individual sequence can be used to uniquely identify an organism to species, just as a supermarket scanner uses the familiar black stripes of the UPC barcode ...
Computational genomics refers to the use of computational and statistical analysis to decipher biology from genome sequences and related data, [1] including both DNA and RNA sequence as well as other "post-genomic" data (i.e., experimental data obtained with technologies that require the genome sequence, such as genomic DNA microarrays).