Search results
Results from the WOW.Com Content Network
The only lines of B flux that encircle any current are those that are inside the toroidal winding. Therefore, from Ampere's circuital law, the intensity of the B field must be zero outside the windings. [6] Fig. 3. Toroidal inductor with circumferential current. Figure 3 of this section shows the most common toroidal winding.
With the toroidal core winding technology an electric coil or winding is created by winding an electrical conductor (e.g. copper wire) through the circular ring and evenly distributing it over the circumference (Toroidal inductors and transformers, toroidal chokes). Before the winding starts, the Toroidal / Magnetic core is mounted into a ...
A Rogowski coil is a toroid of wire used to measure an alternating current I(t) through a cable encircled by the toroid. The picture shows a Rogowski coil encircling a current-carrying cable.
Cores can also be classified by shape, such as toroidal, shell, or cylindrical cores. The ferrite cores used for power transformers work in the low-frequency range (1 to 200 kHz usually [ 2 ] ) and are relatively large in size, can be toroidal, shell, or shaped like the letters 'C', 'D', or 'E'.
A toroidal topload is often preferred to other shapes, such as a sphere. A toroid with a major diameter that is much larger than the secondary diameter provides improved shaping of the electric field at the topload. This provides better protection of the secondary winding (from damaging streamer strikes) than a sphere of similar diameter.
In electromagnetism, a toroidal moment is an independent term in the multipole expansion of the electromagnetic field which is distinct from magnetic and electric multipoles. In the electrostatic multipole expansion, all charge and current distributions can be expanded into a complete set of electric and magnetic multipole coefficients.
Toroidal geometry can help to lessen the external magnetic forces and therefore reduces the size of mechanical support needed. Also, due to the low external magnetic field, toroidal SMES can be located near a utility or customer load. For small SMES, solenoids are usually used because they are easy to coil and no pre-compression is needed.
Compared to a squirrel-cage rotor, the rotor of the slip ring motor has more winding turns; the induced voltage is then higher, and the current lower, than for a squirrel-cage rotor. During the start-up a typical rotor has 3 poles connected to the slip ring.