enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    In two-dimensional space there are 5 Bravais lattices, [5] grouped into four lattice systems, shown in the table below. Below each diagram is the Pearson symbol for that Bravais lattice. Note: In the unit cell diagrams in the following table the lattice points are depicted using black circles and the unit cells are depicted using parallelograms ...

  3. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group. These are the Bravais lattices in three dimensions:

  4. Periodic table (crystal structure) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(crystal...

    The following table gives the crystalline structure of the most thermodynamically stable form(s) for elements that are solid at standard temperature and pressure. Each element is shaded by a color representing its respective Bravais lattice, except that all orthorhombic lattices are grouped together.

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The fourteen three-dimensional lattices, classified by lattice system, are shown above. The crystal structure consists of the same group of atoms, the basis, positioned around each and every lattice point. This group of atoms therefore repeats indefinitely in three dimensions according to the arrangement of one of the Bravais lattices.

  6. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    A lattice system is a set of Bravais lattices (an infinite array of discrete points). Space groups (symmetry groups of a configuration in space) are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices.

  7. Pearson symbol - Wikipedia

    en.wikipedia.org/wiki/Pearson_symbol

    The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [5] The fourteen possible Bravais lattices are identified by the first two letters:

  8. Crystallographic point group - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_point_group

    Leave out the Bravais lattice type. Convert all symmetry elements with translational components into their respective symmetry elements without translation symmetry. (Glide planes are converted into simple mirror planes; screw axes are converted into simple axes of rotation.) Axes of rotation, rotoinversion axes, and mirror planes remain unchanged.

  9. Rectangular lattice - Wikipedia

    en.wikipedia.org/wiki/Rectangular_lattice

    The rectangular lattice and rhombic lattice (or centered rectangular lattice) constitute two of the five two-dimensional Bravais lattice types. [1] The symmetry categories of these lattices are wallpaper groups pmm and cmm respectively. The conventional translation vectors of the rectangular lattices form an angle of 90° and are of unequal ...