enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.

  3. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .

  4. Theoretical strength of a solid - Wikipedia

    en.wikipedia.org/wiki/Theoretical_strength_of_a...

    E is the Young's Modulus of the solid. is the strain experienced by the solid. x is the displacement. The strain can be related to the displacement x by = /, and is the equilibrium inter-atomic spacing.

  5. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    [1]: 58 For example, low carbon steel generally exhibits a very linear stress–strain relationship up to a well defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...

  6. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Young's modulus Density (g/cm 3) Young's modulus per density; specific stiffness (10 6 m 2 s −2) Young's modulus per density squared (10 3 m 5 kg −1 s −2) Young's modulus per density cubed (m 8 kg −2 s −2) Reference Latex foam, low density, 10% compression [4] 5.9 × 10 ^ −7: 0.06: 9.83 × 10 ^ −6: 0.000164: 0.00273: Reversible ...

  7. Impulse excitation technique - Wikipedia

    en.wikipedia.org/wiki/Impulse_excitation_technique

    The most important parameters to define the measurement uncertainty are the mass and dimensions of the sample. Therefore, each parameter has to be measured (and prepared) to a level of accuracy of 0.1%. Especially, the sample thickness is most critical (third power in the equation for Young's modulus).

  8. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.

  9. Structural material - Wikipedia

    en.wikipedia.org/wiki/Structural_material

    Steel is equally strong in tension and compression. Steel is weak in fires, and must be protected in most buildings. Despite its high strength to weight ratio, steel buildings have as much thermal mass as similar concrete buildings. The elastic modulus of steel is approximately 205 GPa. Steel is very prone to corrosion .