Search results
Results from the WOW.Com Content Network
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame the laws of nature can be observed ...
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points , defined as geometric points whose position is identified both mathematically (with numerical coordinate values) and ...
An inertial frame is a reference frame in relative uniform motion to absolute space. All inertial frames share a universal time. Galilean relativity can be shown as follows. Consider two inertial frames S and S' . A physical event in S will have position coordinates r = (x, y, z) and time t in S, and r' = (x' , y' , z' ) and time t' in S' .
A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.)
The Newton–Euler equations are used as the basis for more complicated "multi-body" formulations (screw theory) that describe the dynamics of systems of rigid bodies connected by joints and other constraints. Multi-body problems can be solved by a variety of numerical algorithms. [2] [6] [7]
In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer".
An inertial reference frame (or inertial frame in short) is a frame in which all the physical laws hold. For instance, in a rotating reference frame, Newton's laws have to be modified because there is an extra Coriolis force (such frame is an example of non-inertial frame). Here, "rotating" means "rotating with respect to some inertial frame".
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.