Search results
Results from the WOW.Com Content Network
For example, using single-precision IEEE arithmetic, if x = −2 −149, then x/2 underflows to −0, and dividing 1 by this result produces 1/(x/2) = −∞. The exact result −2 150 is too large to represent as a single-precision number, so an infinity of the same sign is used instead to indicate overflow.
In mathematics, the term undefined refers to a value, function, or other expression that cannot be assigned a meaning within a specific formal system. [ 1 ] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system.
In mathematics, an extraneous solution (or spurious solution) is one which emerges from the process of solving a problem but is not a valid solution to it. [1] A missing solution is a valid one which is lost during the solution process.
Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.
A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...
A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.
[1] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric ...
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. [a] They were introduced by the mathematician Georg Cantor [1] and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ). [2] [b]