Search results
Results from the WOW.Com Content Network
Gravitational field strength within the Earth Gravity field near the surface of the Earth – an object is shown accelerating toward the surface If the bodies in question have spatial extent (as opposed to being point masses), then the gravitational force between them is calculated by summing the contributions of the notional point masses that ...
Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. The study of gravity changes belongs to geodynamics.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
g is the gravitational field, G is the universal gravitational constant, and; M is the total mass enclosed within the surface ∂V. The left-hand side of this equation is called the flux of the gravitational field. Note that according to the law it is always negative (or zero), and never positive.
The gravitational constant is a physical constant that is difficult to measure with high accuracy. [7] This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1]
If the relative density is exactly 1 then the densities are equal; that is, equal volumes of the two substances have the same mass. If the reference material is water, then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float.
In air or water, objects experience a supporting buoyancy force which reduces the apparent strength of gravity (as measured by an object's weight). The magnitude of the effect depends on the air density (and hence air pressure) or the water density respectively; see Apparent weight for details.
According to Newton's gravitational law, the acceleration a at a distance r from a central mass m is = / (to simplify the math, in the following derivations we use the convention of setting the gravitational constant G to one. To calculate the differential accelerations, the results are to be multiplied by G.)