Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
{{Information |Description=Lorentz factor as a function of velocity. Graph created with KmPlot, edited with Inkscape. This is well enough, but it takes more than 1000 segments to draw the curve. I simplify it to 4 bézier arcs. |So: 12:53, 6 October 2007: 1,102 × 1,118 (195 KB) Egg: 12:23, 6 October 2007: 1,102 × 1,118 (195 KB) Egg ...
In an inertial reference frame a free particle has a straight world line. In a non-inertial reference frame the world line of a free particle is curved. Take the example of the fall of an object dropped without initial velocity from a rocket. The rocket has a uniformly accelerated motion with respect to an inertial reference frame.
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
Below are few ultrarelativistic approximations when .The rapidity is denoted : Motion with constant proper acceleration: d ≈ e aτ /(2a), where d is the distance traveled, a = dφ/dτ is proper acceleration (with aτ ≫ 1), τ is proper time, and travel starts at rest and without changing direction of acceleration (see proper acceleration for more details).
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:
Many of the representations, both finite-dimensional and infinite-dimensional, are important in theoretical physics. Representations appear in the description of fields in classical field theory, most importantly the electromagnetic field, and of particles in relativistic quantum mechanics, as well as of both particles and quantum fields in quantum field theory and of various objects in string ...