Search results
Results from the WOW.Com Content Network
It selectively stimulates secretion of aldosterone. The secretion of aldosterone has a diurnal rhythm. Control of aldosterone release from the adrenal cortex: [citation needed] The role of the renin–angiotensin system: Angiotensin is involved in regulating aldosterone and is the core regulator. Angiotensin II acts synergistically with potassium.
Measuring aldosterone alone is not considered adequate to diagnose primary hyperaldosteronism. Rather, both renin and aldosterone are measured, and a resultant aldosterone-to-renin ratio (ARR) is used for case detection. [20] [21] A high aldosterone-to-renin ratio suggests the presence of primary hyperaldosteronism. The diagnosis is made by ...
Treatment includes removing the causative agent (such as licorice), a high-potassium, low-sodium diet (for primary) and high-sodium diet (for secondary), spironolactone and eplerenone, potassium-sparing diuretics that act as aldosterone antagonists, and surgery, depending on the cause. [11] For adrenal adenoma, sometimes surgery is performed.
Aldosterone is the primary of several endogenous members of the class of mineralocorticoids in humans. [citation needed] Deoxycorticosterone is another important member of this class. Aldosterone tends to promote Na + and water retention, and lower plasma K + concentration by the following mechanisms:
In the adrenal cortex, angiotensin II acts to cause the release of aldosterone. Aldosterone acts on the tubules (e.g., the distal convoluted tubules and the cortical collecting ducts) in the kidneys, causing them to reabsorb more sodium and water from the urine. This increases blood volume and, therefore, increases blood pressure.
Pseudohyperaldosteronism (also pseudoaldosteronism) is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure, low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA).
dRTA commonly leads to sodium loss and volume contraction, which causes a compensatory increase in blood levels of aldosterone. [4] Aldosterone causes increased resorption of sodium and loss of potassium in the collecting duct of the kidney, so these increased aldosterone levels cause the hypokalemia which is a common symptom of dRTA. [4]
On one hand, mutations on the gene NR3C2 (coding the mineralocorticoid receptor) cause the synthesis of a non-functional receptor which is unable to bind aldosterone or function correctly. In the kidney, aldosterone plays an important role of regulating sodium and potassium homeostasis by its actions on distal nephron cells. [3]