Search results
Results from the WOW.Com Content Network
The minimum distance between Earth and Mars has been declining over the years, and in 2003 the minimum distance was 55.76 million km, nearer than any such encounter in almost 60,000 years (57,617 BC). The record minimum distance between Earth and Mars in 2729 will stand at 55.65 million km.
At their furthest Mars and Earth can be as far as 401 million km (249 million mi) apart. [191] Mars comes into opposition from Earth every 2.1 years. The planets come into opposition near Mars's perihelion in 2003, 2018 and 2035, with the 2020 and 2033 events being particularly close to perihelic opposition. [192] [193] [194]
Average distance from the Sun – Earth: 1.00 – Average distance of Earth's orbit from the Sun (sunlight travels for 8 minutes and 19 seconds before reaching Earth) – Mars: 1.52 – Average distance from the Sun – Jupiter: 5.2 – Average distance from the Sun – Light-hour: 7.2 – Distance light travels in one hour – Saturn: 9.5 ...
The actual distance between the Moon and Earth can change as quickly as 75 meters per second, [20] or more than 1,000 km (620 mi) in just 6 hours, due to its non-circular orbit. [21] There are other effects that also influence the lunar distance.
While the Kármán line is defined for Earth only, several scientists have estimated the corresponding figures for Mars and Venus. Isidoro Martínez arrived at 80 km (50 miles) and 250 km (160 miles) high, respectively, [31] while Nicolas Bérend arrived at 113 km (70 miles) and 303 km (188 miles). [32]
Deimos (/ ˈ d aɪ m ə s /; systematic designation: Mars II) [11] is the smaller and outer of the two natural satellites of Mars, the other being Phobos. Deimos has a mean radius of 6.2 km (3.9 mi) and takes 30.3 hours to orbit Mars. [5] Deimos is 23,460 km (14,580 mi) from Mars, much farther than Mars's other moon, Phobos. [12]
The delta-v needed is only 3.6 km/s, only about 0.4 km/s more than needed to escape Earth, even though this results in the spacecraft going 2.9 km/s faster than the Earth as it heads off for Mars (see table below). At the other end, the spacecraft must decelerate for the gravity of Mars to capture it. This capture burn should optimally be done ...
Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.