Search results
Results from the WOW.Com Content Network
Conversely, as two massive objects move towards each other, the motion accelerates under gravity causing an increase in the (positive) kinetic energy of the system and, in order to conserve the total sum of energy, the increase of the same amount in the gravitational potential energy of the object is treated as negative.
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude of the force between a point mass, M {\displaystyle M} , and another point mass, m {\displaystyle m} , is given by Newton's law of gravitation : [ 3 ] F = G M m r 2 {\displaystyle F={\frac {GMm}{r^{2}}}}
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
The product GM is the standard gravitational parameter and is often known to higher precision than G or M separately. The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero.
The potential energy, U, depends on the position of an object subjected to gravity or some other conservative force. The gravitational potential energy of an object is equal to the weight W of the object multiplied by the height h of the object's center of gravity relative to an arbitrary datum: =
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
In mathematics and mathematical physics, potential theory is the study of harmonic functions.. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which ...