Search results
Results from the WOW.Com Content Network
The transitions are named sequentially by Greek letters: from n = 2 to n = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission.
The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).
The Lyman Series. The Lyman limit is at the wavelength of 91.2 nm (912 Å), corresponding to a frequency of 3.29 million GHz and a photon energy of 13.6 eV. [3] LyC energies are mostly in the ultraviolet C portion of the electromagnetic spectrum (see Lyman series).
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series.It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state (n = 1), where n is the principal quantum number.
For the Lyman series the naming convention is: n = 2 to n = 1 is called Lyman-alpha, n = 3 to n = 1 is called Lyman-beta, etc. H-alpha has a wavelength of 656.281 nm, [1] is visible in the red part of the electromagnetic spectrum, and is the easiest way for astronomers to trace the ionized hydrogen content of gas clouds.
A Lyman-alpha emitter (LAE) is a type of distant galaxy that emits Lyman-alpha radiation from neutral hydrogen. Most known LAEs are extremely distant, and because of the finite travel time of light they provide glimpses into the history of the universe.
The Lyman-alpha forest was first discovered in 1970 by astronomer Roger Lynds in an observation of the quasar 4C 05.34. [1] Quasar 4C 05.34 was the farthest object observed to that date, and Lynds noted an unusually large number of absorption lines in its spectrum and suggested that most of the absorption lines were all due to the same Lyman-alpha transition. [2]
T1247 is one of nine galaxies in the local universe that have been identified as leaking Lyman continuum (LyC) photons. [1] [4] [9] The first published detection of Lyman continuum photons from T1247 was made in 2013 by Leitet et al. using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). It was the second-known LyC-leaking source in ...