enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  3. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on . For these recurrences, one can express the general term of the sequence as a closed-form expression of .

  4. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The equation is called a linear recurrence with constant coefficients of order d. The order of the sequence is the smallest positive integer ... 1, 1, 2, 3, 5, 8, ...

  5. Three-term recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Three-term_recurrence_relation

    If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .

  6. Skolem problem - Wikipedia

    en.wikipedia.org/wiki/Skolem_problem

    F(n) = F(n − 1) + F(n − 2) together with the initial values F(0) = 0 and F(1) = 1. The Skolem problem is named after Thoralf Skolem, because of his 1933 paper proving the Skolem–Mahler–Lech theorem on the zeros of a sequence satisfying a linear recurrence with constant coefficients. [2]

  7. P-recursive equation - Wikipedia

    en.wikipedia.org/wiki/P-recursive_equation

    In mathematics a P-recursive equation is a linear equation of sequences where the coefficient sequences can be represented as polynomials.P-recursive equations are linear recurrence equations (or linear recurrence relations or linear difference equations) with polynomial coefficients.

  8. Chebyshev equation - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_equation

    The series converges for | | < (note, x may be complex), as may be seen by applying the ratio test to the recurrence. The recurrence may be started with arbitrary values of a 0 and a 1, leading to the two-dimensional space of solutions that arises from second order differential equations. The standard choices are:

  9. Clenshaw algorithm - Wikipedia

    en.wikipedia.org/wiki/Clenshaw_algorithm

    [1] [2] The method was published by Charles William Clenshaw in 1955. It is a generalization of Horner's method for evaluating a linear combination of monomials. It generalizes to more than just Chebyshev polynomials; it applies to any class of functions that can be defined by a three-term recurrence relation. [3]