enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barycenter (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Barycenter_(astronomy)

    If the four giant planets were on a straight line on the same side of the Sun, the combined center of mass would lie at about 1.17 solar radii, or just over 810,000 km, above the Sun's surface. [7] The calculations above are based on the mean distance between the bodies and yield the mean value r 1.

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    At θ = 180°, aphelion, the distance is maximum (by definition, aphelion is – invariably – perihelion plus 180°) ... as well as orbiting the center of mass ...

  4. Apsis - Wikipedia

    en.wikipedia.org/wiki/Apsis

    The apsides refer to the farthest (2) and nearest (3) points reached by an orbiting planetary body (2 and 3) with respect to a primary, or host, body (1). An apsis (from Ancient Greek ἁψίς (hapsís) 'arch, vault'; pl. apsides / ˈ æ p s ɪ ˌ d iː z / AP-sih-deez) [1] [2] is the farthest or nearest point in the orbit of a planetary body about its primary body.

  5. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse. r p is the radius at periapsis (or "perifocus" etc.), the closest distance.

  6. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    is the distance between the orbiting body and center of mass. is the length of the semi-major axis. The velocity equation for a hyperbolic trajectory has either (+), or it is the same with the convention that in that case () is negative.

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Figure 1. Typical elliptical path of a smaller mass m orbiting a much larger mass M. The larger mass is also moving on an elliptical orbit, but it is too small to be seen because M is much greater than m. The ends of the diameter indicate the apsides, the points of closest and farthest distance.

  8. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  9. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    where μ is the reduced mass and r is the relative position r 2 − r 1 (with these written taking the center of mass as the origin, and thus both parallel to r) the rate of change of the angular momentum L equals the net torque N = = ˙ ˙ + ¨ , and using the property of the vector cross product that v × w = 0 for any vectors v and w ...