Search results
Results from the WOW.Com Content Network
Now, invoking the condition that the system is in equilibrium, that is, the chemical potential of the adsorbed molecules is equal to that of the molecules in gas phase, we have An example plot of the surface coverage θ A = P/(P + P 0) with respect to the partial pressure of the adsorbate. P 0 = 100 mTorr.
Assuming initial atmospheric conditions (1 bar and 20 °C), the following table [1] lists the flame temperature for various fuels under constant pressure conditions. The temperatures mentioned here are for a stoichiometric fuel-oxidizer mixture (i.e. equivalence ratio φ = 1).
The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).
For example, the blood/gas partition coefficient of a general anesthetic measures how easily the anesthetic passes from gas to blood. [5] Partition coefficients can also be defined when one of the phases is solid , for instance, when one phase is a molten metal and the second is a solid metal, [ 6 ] or when both phases are solids. [ 7 ]
Consider the first triangular diagram below, which shows all possible mixtures of methane, oxygen and nitrogen. Air is a mixture of about 21 volume percent oxygen, and 79 volume percent inerts (nitrogen). Any mixture of methane and air will therefore lie on the straight line between pure methane and pure air – this is shown as the blue air-line.
In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution. An example where Henry's law is at play is the depth-dependent dissolution of oxygen and nitrogen in the blood of underwater divers that changes during decompression , going to decompression sickness .
The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source. If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate. Subsequently, the mass flow rate decreases during the ...
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [3]