Search results
Results from the WOW.Com Content Network
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
A value in decimal degrees to 5 decimal places is precise to 1.11 metres (3 ft 8 in) at the equator. Elevation also introduces a small error: at 6,378 metres (20,925 ft) elevation, the radius and surface distance is increased by 0.001 or 0.1%.
Thus the 're-subtracting' of 1 leaves a mantissa ending in '100000000000000' instead of '010111000110010', representing a value of '1.1111111111117289E-4' rounded by Excel to 15 significant digits: '1.11111111111173E-4'. Of course mathematical 1 + x − 1 = x, 'floating point math' is sometimes a little different, that is not to be blamed on ...
3 / 7 1-digit-denominator Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures
The base-10 logarithm of a normalized number (i.e., a × 10 b with 1 ≤ a < 10 and b as an integer), is rounded such that its decimal part (called mantissa) has as many significant figures as the significant figures in the normalized number. log 10 (3.000 × 10 4) = log 10 (10 4) + log 10 (3.000) = 4.000000...
In decimal notation, a number ending in the digit "5" is also considered more round than one ending in another non-zero digit (but less round than any which ends with "0"). [2] [3] For example, the number 25 tends to be seen as more round than 24. Thus someone might say, upon turning 45, that their age is more round than when they turn 44 or 46.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
The last digit of a fourth power in decimal can only be 0 (in fact 0000), 1, 5 (in fact 0625), or 6. In hexadecimal the last nonzero digit of a fourth power is always 1. [ 1 ]