Search results
Results from the WOW.Com Content Network
In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent. The second premise "affirms" the antecedent. The conclusion, that the consequent must be true, is deductively valid. A mixed hypothetical syllogism has four possible forms, two of which are valid, while the other two are invalid.
Each premise and the conclusion can be of type A, E, I or O, and the syllogism can be any of the four figures. A syllogism can be described briefly by giving the letters for the premises and conclusion followed by the number for the figure. For example, the syllogism BARBARA below is AAA-1, or "A-A-A in the first figure".
In logic, the corresponding conditional of an argument (or derivation) is a material conditional whose antecedent is the conjunction of the argument's (or derivation's) premises and whose consequent is the argument's conclusion. An argument is valid if and only if its corresponding conditional is a logical truth.
Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).
A counterfactual statement is a conditional statement with a false antecedent. For example, the statement "If Joseph Swan had not invented the modern incandescent light bulb, then someone else would have invented it anyway" is a counterfactual, because, in fact, Joseph Swan invented the modern incandescent light bulb. The most immediate task ...
The Logical Division of the Four Figures is a Mistaken Subtlety. Legitimate conclusions can be drawn in all four figures. Only the first figure determines the conclusion by pure, unmixed reasoning. The other figures use unspoken, inserted inferences. Logic should consist of open, not covert, reasoning.
Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. [1] A sentence is said to be a logical consequence of a set of sentences, for a given language , if and only if , using only logic (i.e., without regard to any personal interpretations of the sentences) the sentence must ...
But it can be rewritten as a standard form AAA-1 syllogism by first substituting the synonymous term "humans" for "people" and then by reducing the complementary term "immortal" in the first premise using the immediate inference known as obversion (that is, the statement "No humans are immortal." is equivalent to the statement "All humans are ...