Search results
Results from the WOW.Com Content Network
AFGROW (Air Force Grow) is a Damage Tolerance Analysis (DTA) computer program that calculates crack initiation, fatigue crack growth, and fracture to predict the life of metallic structures. Originally developed by the Air Force Research Laboratory , AFGROW [ 1 ] is mainly used for aerospace applications, but can be applied to any type of ...
Crack growth equations are used to predict the crack size starting from a given initial flaw and are typically based on experimental data obtained from constant amplitude fatigue tests. One of the earliest crack growth equations based on the stress intensity factor range of a load cycle is the Paris–Erdogan equation [2]
In fracture mechanics, a crack growth resistance curve shows the energy required for crack extension as a function of crack length in a given material.For materials that can be modeled with linear elastic fracture mechanics (LEFM), crack extension occurs when the applied energy release rate exceeds the material's resistance to crack extension .
If a crack is present in a specimen that undergoes cyclic loading, the specimen will plastically deform at the crack tip and delay the crack growth. In the event of an overload or excursion, this model changes slightly to accommodate the sudden increase in stress from that which the material previously experienced.
Different types of crack growth (e.g. fatigue, stress corrosion cracking, hydrogen embrittlement) produce characteristic features on the surface, which can be used to help identify the failure mode. The overall pattern of cracking can be more important than a single crack, however, especially in the case of brittle materials like ceramics and ...
The specimen showing stable crack growth shows an increasing trend in fracture toughness as the crack length increases (ductile crack extension). This plot of fracture toughness vs crack length is called the resistance (R)-curve. ASTM E561 outlines a procedure for determining toughness vs crack growth curves in materials. [18]
In a 1961 paper, P. C. Paris introduced the idea that the rate of crack growth may depend on the stress intensity factor. [4] Then in their 1963 paper, Paris and Erdogan indirectly suggested the equation with the aside remark "The authors are hesitant but cannot resist the temptation to draw the straight line slope 1/4 through the data" after reviewing data on a log-log plot of crack growth ...
The width of a striation indicates the local rate of crack growth and is typical of the overall rate of growth over the fracture surface. The rate of growth can be predicted with a crack growth equation such as the Paris-Erdogan equation. Defects such as inclusions and grain boundaries may locally slow down the rate of growth.