Search results
Results from the WOW.Com Content Network
[1] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric ...
Another way of looking is that, at the start, 2 cups are in the "right" orientation and 1 is "wrong". Changing 1 right cup and 1 wrong cup, the situation remains the same. Changing 2 right cups results in a situation with 3 wrong cups, after which the next move restores the original status of 1 wrong cup. Thus, any number of moves results in a ...
For any integer n, n ≡ 1 (mod 2) if and only if 3n + 1 / 2 ≡ 2 (mod 3). Equivalently, 2 n − 1 / 3 ≡ 1 (mod 2) if and only if n ≡ 2 (mod 3) . Conjecturally, this inverse relation forms a tree except for a 1–2 loop (the inverse of the 1–2 loop of the function f(n) revised as indicated above).
Then () = means that the order of the group is 8 (i.e., there are 8 numbers less than 20 and coprime to it); () = means the order of each element divides 4, that is, the fourth power of any number coprime to 20 is congruent to 1 (mod 20). The set {3,19} generates the group, which means that every element of (/) is of the form 3 a × 19 b (where ...
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Zn; it has φ (n) elements, φ being Euler's totient function, and is denoted as U (n) or ...
a 1 = 20615674205555510, a 2 = 3794765361567513 (sequence A083216 in the OEIS). In this sequence, the positions at which the numbers in the sequence are divisible by a prime p form an arithmetic progression; for instance, the even numbers in the sequence are the numbers a i where i is congruent to 1 mod 3.
X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by X = t 1 (7 × 11) × 4 + t 2 (5 × 11) × 4 + t 3 (5 × 7) × 6. where t 1 = 3 is the modular multiplicative inverse of 7 × 11 (mod 5), t 2 = 6 is the modular multiplicative inverse of 5 × 11 (mod 7) and t 3 = 6 is the modular multiplicative ...