Search results
Results from the WOW.Com Content Network
Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms. Decay heat occurs naturally from decay of long-lived radioisotopes that are primordially present from the Earth's formation.
The flow of heat from Earth's interior to the surface is estimated at 47±2 terawatts (TW) [1] and comes from two main sources in roughly equal amounts: the radiogenic heat produced by the radioactive decay of isotopes in the mantle and crust, and the primordial heat left over from the formation of Earth. [2]
The decay theory proposed by Thorndike was heavily criticized by McGeoch and his interference theory. [5] This led to the abandoning of the decay theory, until the late 1950s when studies by John Brown and the Petersons showed evidence of time based decay by filling the retention period by counting backwards in threes from a given number.
The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E . If A is the radioactive activity , i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is:
Exothermic chemical reactions tend to be more spontaneous and can emit light or heat, resulting in runaway feedback(i.e. explosions). Q values are also featured in particle physics. For example, Sargent's rule states that weak reaction rates are proportional to Q 5. The Q value is the kinetic energy released in the decay at
Heat transfer: If an object at one temperature is exposed to a medium of another temperature, the temperature difference between the object and the medium follows exponential decay (in the limit of slow processes; equivalent to "good" heat conduction inside the object, so that its temperature remains relatively uniform through its volume).
Thermal decomposition, or thermolysis, is a chemical decomposition of a substance caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is: