enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subgroups of cyclic groups - Wikipedia

    en.wikipedia.org/wiki/Subgroups_of_cyclic_groups

    In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1] [2] This result has been called the fundamental theorem of cyclic groups. [3] [4]

  3. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    A cyclic group is a group which is equal to one of its cyclic subgroups: G = g for some element g, called a generator of G. For a finite cyclic group G of order n we have G = {e, g, g 2, ... , g n−1}, where e is the identity element and g i = g j whenever i ≡ j (mod n); in particular g n = g 0 = e, and g −1 = g n−1.

  4. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    The lattice of subgroups of a group is the lattice defined by its subgroups, partially ordered by set inclusion. locally cyclic group A group is locally cyclic if every finitely generated subgroup is cyclic. Every cyclic group is locally cyclic, and every finitely-generated locally cyclic group is cyclic. Every locally cyclic group is abelian.

  5. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    The subgroups of any given group form a complete lattice under inclusion, called the lattice of subgroups. (While the infimum here is the usual set-theoretic intersection, the supremum of a set of subgroups is the subgroup generated by the set-theoretic union of the subgroups, not the set-theoretic union itself.)

  6. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    Small groups of prime power order p n are given as follows: Order p: The only group is cyclic. Order p 2: There are just two groups, both abelian. Order p 3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p.

  7. Characteristic subgroup - Wikipedia

    en.wikipedia.org/wiki/Characteristic_subgroup

    In the quaternion group of order 8, each of the cyclic subgroups of order 4 is normal, but none of these are characteristic. However, the subgroup, {1, −1}, is characteristic, since it is the only subgroup of order 2. If n > 2 is even, the dihedral group of order 2n has 3 subgroups of index 2, all of which are normal. One of these is the ...

  8. Lattice of subgroups - Wikipedia

    en.wikipedia.org/wiki/Lattice_of_subgroups

    If additionally the lattice satisfies the ascending chain condition, then the group is cyclic. Groups whose lattice of subgroups is a complemented lattice are called complemented groups (Zacher 1953), and groups whose lattice of subgroups are modular lattices are called Iwasawa groups or modular groups (Iwasawa 1941).

  9. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    Example subgroups from a hexagonal dihedral symmetry. D 1 is isomorphic to Z 2, the cyclic group of order 2. D 2 is isomorphic to K 4, the Klein four-group. D 1 and D 2 are exceptional in that: D 1 and D 2 are the only abelian dihedral groups. Otherwise, D n is non-abelian. D n is a subgroup of the symmetric group S n for n ≥ 3.