enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical power budget - Wikipedia

    en.wikipedia.org/wiki/Optical_power_budget

    The optical power budget (also fiber-optic link budget and loss budget) in a fiber-optic communication link is the allocation of available optical power (launched into a given fiber by a given source) among various loss-producing mechanisms such as launch coupling loss, fiber attenuation, splice losses, and connector losses, in order to ensure that adequate signal strength (optical power) is ...

  3. Attenuation - Wikipedia

    en.wikipedia.org/wiki/Attenuation

    Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance travelled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high quality of transparency of modern optical ...

  4. Link budget - Wikipedia

    en.wikipedia.org/wiki/Link_budget

    Long distance fiber-optic communication became practical only with the development of ultra-transparent glass fibers. A typical path loss for single-mode fiber is 0.2 dB/km, [3] far lower than any other guided medium.

  5. Optical fiber - Wikipedia

    en.wikipedia.org/wiki/Optical_fiber

    Loss = dB loss per connector × number of connectors + dB loss per splice × number of splices + dB loss per kilometer × kilometers of fiber, where the dB loss per kilometer is a function of the type of fiber and can be found in the manufacturer's specifications. For example, a typical 1550 nm single-mode fiber has a loss of 0.3 dB per kilometer.

  6. Fiber-optic communication - Wikipedia

    en.wikipedia.org/wiki/Fiber-optic_communication

    Fiber-optic communication is a form of optical communication for transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. [ 1 ] [ 2 ] The light is a form of carrier wave that is modulated to carry information. [ 3 ]

  7. Telecommunications engineering - Wikipedia

    en.wikipedia.org/wiki/Telecommunications_engineering

    Optical fiber was successfully developed in 1970 by Corning Glass Works, with attenuation low enough for communication purposes (about 20dB/km), and at the same time GaAs (Gallium arsenide) semiconductor lasers were developed that were compact and therefore suitable for transmitting light through fiber optic cables for long distances.

  8. Insertion loss - Wikipedia

    en.wikipedia.org/wiki/Insertion_loss

    In telecommunications, insertion loss is the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB). If the power transmitted to the load before insertion is P T and the power received by the load after insertion is P R, then the insertion loss in decibels ...

  9. Radio over fiber - Wikipedia

    en.wikipedia.org/wiki/Radio_over_fiber

    Electrical RF is directly connected to a TV or set-top box. 1550 nm is more popular because it has less losses in the fiber and by using fiber-optic amplifier known as EDFA it is possible to extend the transport distance. 1310 nm loses about 0.35 dB/km of optical signal, 1550 nm loses only 0.25 dB/km. Optical budget between transmitter and ...