Search results
Results from the WOW.Com Content Network
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
An alternated hexagon, h{6}, is an equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into six equilateral triangles by adding a center point. This pattern repeats within the regular triangular tiling.
The diagonals divide the polygon into 1, 4, 11, 24, ... pieces. [a] For a regular n-gon inscribed in a circle of radius , the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n.
The triangle of the largest area of all those inscribed in a given circle is equilateral, and the triangle of the smallest area of all those circumscribed around a given circle is also equilateral. [15] It is the only regular polygon aside from the square that can be inscribed inside any other regular polygon.
A cyclic polygon (one inscribed in a circle) has the largest area of any polygon with a given number of sides of the same lengths. A version of the isoperimetric inequality for triangles states that the triangle of greatest area among all those with a given perimeter is equilateral. [35]
If R is a regular polygon's radius and n is the number of its sides, then its perimeter is 2 n R sin ( 180 ∘ n ) . {\displaystyle 2nR\sin \left({\frac {180^{\circ }}{n}}\right).} A splitter of a triangle is a cevian (a segment from a vertex to the opposite side) that divides the perimeter into two equal lengths, this common length being ...
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
A tangential polygon is a polygon in which the sides are all tangent to a common circle. Every tangential polygon may be triangulated by drawing edges from the circle's center to the polygon's vertices, forming a collection of triangles that all have height equal to the circle's radius; it follows from this decomposition that the total area of a tangential polygon equals half the perimeter ...