enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  3. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...

  4. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  5. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  6. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The name is in analogy with quadrature, meaning numerical integration, where weighted sums are used in methods such as Simpson's method or the Trapezoidal rule. There are various methods for determining the weight coefficients, for example, the Savitzky–Golay filter. Differential quadrature is used to solve partial differential equations ...

  7. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    Figure 1.Comparison of different schemes. In applied mathematics, the central differencing scheme is a finite difference method that optimizes the approximation for the differential operator in the central node of the considered patch and provides numerical solutions to differential equations. [1]

  8. Pseudo-spectral method - Wikipedia

    en.wikipedia.org/wiki/Pseudo-spectral_method

    In many practical partial differential equations, one has a term that involves derivatives (such as a kinetic energy contribution), and a multiplication with a function (for example, a potential). In the spectral method, the solution ψ {\displaystyle \psi } is expanded in a suitable set of basis functions, for example plane waves,

  9. Dormand–Prince method - Wikipedia

    en.wikipedia.org/wiki/Dormand–Prince_method

    Dormand–Prince is the default method in the ode45 solver for MATLAB [4] and GNU Octave [5] and is the default choice for the Simulink's model explorer solver. It is an option in Python's SciPy ODE integration library [6] and in Julia's ODE solvers library. [7] Implementations for the languages Fortran, [8] Java, [9] and C++ [10] are also ...