enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joseph-Louis Lagrange - Wikipedia

    en.wikipedia.org/wiki/Joseph-Louis_Lagrange

    He studied the three-body problem for the Earth, Sun and Moon (1764) and the movement of Jupiter's satellites (1766), and in 1772 found the special-case solutions to this problem that yield what are now known as Lagrangian points. Lagrange is best known for transforming Newtonian mechanics into a branch of analysis, Lagrangian mechanics. He ...

  3. Lagrange point - Wikipedia

    en.wikipedia.org/wiki/Lagrange_point

    Lagrange points are the constant-pattern solutions of the restricted three-body problem. For example, given two massive bodies in orbits around their common barycenter , there are five positions in space where a third body, of comparatively negligible mass , could be placed so as to maintain its position relative to the two massive bodies.

  4. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    After Newton, Joseph-Louis Lagrange attempted to solve the three-body problem in 1772, analyzed the stability of planetary orbits, and discovered the existence of the Lagrange points. Lagrange also reformulated the principles of classical mechanics, emphasizing energy more than force, and developing a method to use a single polar coordinate ...

  5. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  6. Lagrange, Euler, and Kovalevskaya tops - Wikipedia

    en.wikipedia.org/wiki/Lagrange,_Euler,_and...

    In classical mechanics, the rotation of a rigid body such as a spinning top under the influence of gravity is not, in general, an integrable problem.There are however three famous cases that are integrable, the Euler, the Lagrange, and the Kovalevskaya top, which are in fact the only integrable cases when the system is subject to holonomic constraints.

  7. Sophie Germain - Wikipedia

    en.wikipedia.org/wiki/Sophie_Germain

    Marie-Sophie Germain (French: [maʁi sɔfi ʒɛʁmɛ̃]; 1 April 1776 – 27 June 1831) was a French mathematician, physicist, and philosopher.Despite initial opposition from her parents and difficulties presented by society, she gained education from books in her father's library, including ones by Euler, and from correspondence with famous mathematicians such as Lagrange, Legendre, and Gauss ...

  8. Mécanique analytique - Wikipedia

    en.wikipedia.org/wiki/Mécanique_analytique

    The work was first published in 1788 (volume 1) and 1789 (volume 2). Lagrange issued a substantially enlarged second edition of volume 1 in 1811, toward the end of his life. His revision of volume 2 was substantially complete at the time of his death in 1813, but was not published until 1815.

  9. History of group theory - Wikipedia

    en.wikipedia.org/wiki/History_of_group_theory

    One foundational root of group theory was the quest of solutions of polynomial equations of degree higher than 4. An early source occurs in the problem of forming an equation of degree m having as its roots m of the roots of a given equation of degree >. For simple cases, the problem goes back to Johann van Waveren Hudde (1659). [4]