Search results
Results from the WOW.Com Content Network
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Complex modulus may refer to: Modulus of complex number , in mathematics, the norm or absolute value, of a complex number: | x + i y | = x 2 + y 2 {\displaystyle |x+iy|={\sqrt {x^{2}+y^{2}}}} Dynamic modulus , in materials engineering, the ratio of stress to strain under vibratory conditions
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit j satisfying =, where . A split-complex number has two real number components x and y , and is written z = x + y j . {\displaystyle z=x+yj.}
If K is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If K is a function field, ν(p) = 0 for all infinite places. In the function field case, a modulus is the same thing as an effective divisor, [5] and in the number field case, a modulus can be considered as special form of Arakelov divisor. [6]
Modulus (modular arithmetic), base of modular arithmetic; Modulus, the absolute value of a real or complex number ( | a |) Moduli space, in mathematics a geometric space whose points represent algebro-geometric objects; Conformal modulus, a measure of the size of a curve family; Modulus of continuity, a function gauging the uniform continuity ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.