Search results
Results from the WOW.Com Content Network
The RSA problem is defined as the task of taking e th roots modulo a composite n: recovering a value m such that c ≡ m e (mod n), where (n, e) is an RSA public key, and c is an RSA ciphertext. Currently the most promising approach to solving the RSA problem is to factor the modulus n.
In 2003, RSA Security claimed that 1024-bit keys were likely to become crackable sometime between 2006 and 2010, while 2048-bit keys are sufficient until 2030. [15] As of 2020 the largest RSA key publicly known to be cracked is RSA-250 with 829 bits. [16]
Symmetric-key algorithms use a single shared key; keeping data secret requires keeping this key secret. Public-key algorithms use a public key and a private key. The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the receiver's public key; only the holder of the private key can ...
Algorithm and variant Output size (bits) Internal state size (bits) Block size (bits) Rounds Operations Security against collision attacks (bits) Security against length extension attacks
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
The key space increases by a factor of 2 for each additional bit of key length, and if every possible value of the key is equiprobable; this translates into a doubling of the average brute-force key search time with every additional bit of key length. This implies that the effort of a brute-force search increases exponentially with key length.
The first RSA numbers generated, from RSA-100 to RSA-500, were labeled according to their number of decimal digits. Later, beginning with RSA-576, binary digits are counted instead. An exception to this is RSA-617, which was created before the change in the numbering scheme.
In cryptography, XTR is an algorithm for public-key encryption.XTR stands for 'ECSTR', which is an abbreviation for Efficient and Compact Subgroup Trace Representation. It is a method to represent elements of a subgroup of a multiplicative group of a finite field.