Ad
related to: sum to product identities calculator calculus 3
Search results
Results from the WOW.Com Content Network
The product-to-sum identities [28] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems. Historically, the first four of these were known as Werner's formulas , after Johannes Werner who used them for astronomical calculations. [ 29 ]
The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:
Another twelve identities follow by cyclic permutation. The proof (Todhunter, [1] Art.49) of the first formula starts from the identity = , using the cosine rule to express A in terms of the sides and replacing the sum of two cosines by a product. (See sum-to-product identities.)
A product integral is any product-based counterpart of the usual sum-based integral of calculus. The product integral was developed by the mathematician Vito Volterra in 1887 to solve systems of linear differential equations .
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
In this terminology, the product rule states that the derivative operator is a derivation on functions. In differential geometry , a tangent vector to a manifold M at a point p may be defined abstractly as an operator on real-valued functions which behaves like a directional derivative at p : that is, a linear functional v which is a derivation ...
Inverse trigonometric functions – Inverse functions of sin, cos, tan, etc. Lists of integrals; List of mathematical functions; Matrix calculus – Specialized notation for multivariable calculus; Trigonometric functions – Functions of an angle; Vector calculus identities – Mathematical identities
Ad
related to: sum to product identities calculator calculus 3