enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  3. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.

  4. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which at least one of f and 1/ f is holomorphic.

  5. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers R {\displaystyle \mathbb {R} } , the completion of the rational numbers with respect to the p {\displaystyle p} -adic absolute value ...

  6. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    The roots of the corresponding scalar polynomial equation, λ 2 = λ, are 0 and 1. Thus any projection has 0 and 1 for its eigenvalues. The multiplicity of 0 as an eigenvalue is the nullity of P, while the multiplicity of 1 is the rank of P. Another example is a matrix A that satisfies A 2 = α 2 I for some scalar α. The eigenvalues must be ± ...

  7. Hurwitz's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Hurwitz's_theorem_(complex...

    If f has a zero of order m at z 0 then for every small enough ρ > 0 and for sufficiently large k ∈ N (depending on ρ), f k has precisely m zeroes in the disk defined by |z − z 0 | < ρ, including multiplicity. Furthermore, these zeroes converge to z 0 as k → ∞. [1]

  8. Secret Santa gives thousands of dollars to North Carolina ...

    www.aol.com/secret-santa-gives-thousands-dollars...

    Every year, this anonymous, wealthy businessman travels the country during the holidays, giving away about $100,000 in $100 bills.

  9. Weierstrass factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_factorization...

    It is clear that any finite set {} of points in the complex plane has an associated polynomial = whose zeroes are precisely at the points of that set. The converse is a consequence of the fundamental theorem of algebra: any polynomial function () in the complex plane has a factorization = (), where a is a non-zero constant and {} is the set of zeroes of ().