Search results
Results from the WOW.Com Content Network
Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...
As soon as the glucose enters the cell, it is phosphorylated into glucose-6-phosphate in order to preserve the concentration gradient so glucose will continue to enter the cell. [7] Insulin also provides signals to several other body systems, and is the chief regulator of metabolic control in humans. [citation needed]
The recommended daily amount of drinking water for humans varies. [1] It depends on activity, age, health, and environment.In the United States, the Adequate Intake for total water, based on median intakes, is 4.0 litres (141 imp fl oz; 135 US fl oz) per day for males older than 18, and 3.0 litres (106 imp fl oz; 101 US fl oz) per day for females over 18; it assumes about 80% from drink and 20 ...
But following meals, capillary and arterial blood glucose levels can be significantly higher than venous levels. Although these differences vary widely, one study found that following the consumption of 50 grams of glucose, "the mean capillary blood glucose concentration is higher than the mean venous blood glucose concentration by 35%." [33] [34]
The liver is the primary contributing organ which produces glucose continuously even when nothing is being eaten. The liver will supply glucose either from fats or from previously eaten foods. Therefore, the basal rate can be thought of as a sort of "second bolus" after the initial bolus intake of insulin. [5]
These reference values include water from drinking water, other beverages, and from food. About 80% of our daily water requirement comes from the beverages we drink, with the remaining 20% coming from food. [54] Water content varies depending on the type of food consumed, with fruit and vegetables containing more than cereals, for example. [55]
Glycemic load accounts for how much carbohydrate is in the food and how much each gram of carbohydrate in the food raises blood glucose levels. Glycemic load is based on the glycemic index (GI), and is calculated by multiplying the weight of available carbohydrate in the food (in grams) by the food's glycemic index, and then dividing by 100.
Graph depicting blood sugar change during a day with three meals. The glycemic (glycaemic) index (GI; / ɡ l aɪ ˈ s iː m ɪ k / [1]) is a number from 0 to 100 assigned to a food, with pure glucose arbitrarily given the value of 100, which represents the relative rise in the blood glucose level two hours after consuming that food. [2]