Search results
Results from the WOW.Com Content Network
In analytical chemistry, the detection limit, lower limit of detection, also termed LOD for limit of detection or analytical sensitivity (not to be confused with statistical sensitivity), is the lowest quantity of a substance that can be distinguished from the absence of that substance (a blank value) with a stated confidence level (generally 99%).
A calibration curve plot showing limit of detection (LOD), limit of quantification (LOQ), dynamic range, and limit of linearity (LOL).. In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. [1]
Stripping analysis has the following properties: sensitive and reproducible (RSD<5%) method for trace metal ion analysis in aqueous media, 2) concentration limits of detection for many metals are in the low ppb to high ppt range (S/N=3) and this compares favorably with AAS or ICP analysis, field deployable instrumentation that is inexpensive ...
Etendue and ideal concentration. The limit on maximum concentration (shown) is an optic with an entrance aperture S, in air (n i = 1) collecting light within a solid angle of angle 2α (its acceptance angle) and sending it to a smaller area receiver Σ immersed in a medium of refractive index n, whose points are illuminated within a solid angle ...
Differential pulse voltammetry has these characteristics: 1) reversible reactions have symmetric peaks, and irreversible reactions have asymmetric peaks, 2) the peak potential is equal to E 1/2 r-ΔE in reversible reactions, and the peak current is proportional to the concentration, 3) The detection limit is about 10 −8 M. [citation needed]
The total cross section is related to the absorbance of the light intensity through the Beer–Lambert law, which says that absorbance is proportional to concentration: A λ = Clσ, where A λ is the absorbance at a given wavelength λ, C is the concentration as a number density, and l is the path length.
Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering or spectrometry, is an ion beam analysis technique, in materials science, to obtain elemental concentration depth profiles in thin films. [1] This technique can be achieved using many processes.
The odor detection threshold and the odor recognition threshold are absolute thresholds; the first is the minimum concentration at which an odor can be detected without any requirements to identify or recognize the stimulus, while the second is the minimum concentration at which a stimulus can be identified or recognized. [2]