enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    This solution is asymptotically stable as t → ∞ ("in the future") if and only if for all eigenvalues λ of A, Re(λ) < 0. Similarly, it is asymptotically stable as t → −∞ ("in the past") if and only if for all eigenvalues λ of A, Re(λ) > 0. If there exists an eigenvalue λ of A with Re(λ) > 0 then the solution is unstable for t → ...

  3. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis). The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge.

  4. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  5. Marginal stability - Wikipedia

    en.wikipedia.org/wiki/Marginal_stability

    In the theory of dynamical systems and control theory, a linear time-invariant system is marginally stable if it is neither asymptotically stable nor unstable.Roughly speaking, a system is stable if it always returns to and stays near a particular state (called the steady state), and is unstable if it goes further and further away from any state, without being bounded.

  6. Stable distribution - Wikipedia

    en.wikipedia.org/wiki/Stable_distribution

    Python implementation is located in scipy.stats.levy_stable in the SciPy package. Julia provides package StableDistributions.jl which has methods of generation, fitting, probability density, cumulative distribution function, characteristic and moment generating functions, quantile and related functions, convolution and affine transformations of ...

  7. Stable marriage problem - Wikipedia

    en.wikipedia.org/wiki/Stable_marriage_problem

    In a uniformly-random instance of the stable marriage problem with n men and n women, the average number of stable matchings is asymptotically ⁡. [6] In a stable marriage instance chosen to maximize the number of different stable matchings, this number is an exponential function of n . [ 7 ]

  8. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    An exponentially stable LTI system is one that will not "blow up" (i.e., give an unbounded output) when given a finite input or non-zero initial condition. Moreover, if the system is given a fixed, finite input (i.e., a step ), then any resulting oscillations in the output will decay at an exponential rate , and the output will tend ...

  9. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    Hence, the Babylonian method is numerically stable, while Method X is numerically unstable. Numerical stability is affected by the number of the significant digits the machine keeps. If a machine is used that keeps only the four most significant decimal digits, a good example on loss of significance can be given by the two equivalent functions

  1. Related searches stable asymptotically or unstable list python tutorial step by step for pareto excel free

    asymptotically stableasymptotic stability meaning
    asymptotic stability formulaasymptotic properties of solutions
    asymptomatic stability