enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemorheology - Wikipedia

    en.wikipedia.org/wiki/Hemorheology

    Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.

  4. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    Typical values for the viscosity of normal human plasma at 37 °C is 1.4 mN·s/m 2. [3] The viscosity of normal plasma varies with temperature in the same way as does that of its solvent water [4];a 3°C change in temperature in the physiological range (36.5°C to 39.5°C)reduces plasma viscosity by about 10%. [5]

  5. Biofluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Biofluid_dynamics

    Turbulent flow is present in circumstances under which Re > 4000. The range of 2000 < Re < 4000 is known as the transition range. Most blood flow in humans is laminar, having a Re of 300 or less, it is possible for turbulence to occur at very high flow rates in the descending aorta, for example, in highly conditioned athletes.

  6. Tumor hypoxia - Wikipedia

    en.wikipedia.org/wiki/Tumor_hypoxia

    Tumor stroma and extracellular matrix in hypoxia. Tumor hypoxia is the situation where tumor cells have been deprived of oxygen.As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues.

  7. Fåhræus effect - Wikipedia

    en.wikipedia.org/wiki/Fåhræus_effect

    The Fåhræus effect (/ f ɑː ˈ r eɪ. ə s /) is the decrease in average concentration of red blood cells in human blood as the diameter of the glass tube in which it is flowing decreases. In other words, in blood vessels with diameters less than 500 micrometers , the hematocrit decreases with decreasing capillary diameter.

  8. Erythrocyte deformability - Wikipedia

    en.wikipedia.org/wiki/Erythrocyte_deformability

    Erythrocyte deformability is an important determinant of blood viscosity, hence blood flow resistance in the vascular system. [3] It affects blood flow in large blood vessels, due to the increased frictional resistance between fluid laminae under laminar flow conditions.

  9. Fåhræus–Lindqvist effect - Wikipedia

    en.wikipedia.org/wiki/Fåhræus–Lindqvist_effect

    The Fåhræus–Lindqvist effect (/ f ɑː ˈ r eɪ. ə s ˈ l ɪ n d k v ɪ s t /) or sigma effect [1] describes how the viscosity of blood changes with the diameter of the vessel it travels through. In particular there is a decrease in viscosity as the vessel diameter decreases, but only at small diameters of 10–300 micrometers (mainly ...