Search results
Results from the WOW.Com Content Network
The nuclear fuel cycle employs a full actinide recycle with two major options: One is an intermediate-size (150–600 MWe) sodium-cooled reactor with uranium-plutonium-minor-actinide-zirconium metal alloy fuel, supported by a fuel cycle based on pyrometallurgical reprocessing in facilities integrated with the reactor. The second is a medium to ...
Carbon, in the form of reactor-grade graphite [7] or pyrolytic carbon, used in e.g. RBMK and pebble-bed reactors, or in compounds, e.g. carbon dioxide. As carbon dioxide contains twice as many oxygen atoms as it does carbon atoms and both have moderating and neutron absorbing effects in a similar range (see above), a significant share of the ...
Nuclear fuel process A graph comparing nucleon number against binding energy Close-up of a replica of the core of the research reactor at the Institut Laue-Langevin. Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.
In carbon dioxide-cooled reactors such as the AGR, if the solid control rods fail to arrest the nuclear reaction, nitrogen gas can be injected into the primary coolant cycle. This is because nitrogen has a larger absorption cross-section for neutrons than carbon or oxygen ; hence, the core then becomes less reactive.
Proponents argue that nuclear power is a sustainable energy source which reduces carbon emissions and can increase energy security if its use supplants a dependence on imported fuels. [ 52 ] [ full citation needed ] Proponents advance the notion that nuclear power produces virtually no air pollution, in contrast to the chief viable alternative ...
MSRs enable cheaper closed nuclear fuel cycles, because they can operate with slow neutrons. Closed fuel cycles can reduce environmental impacts: chemical separation turns long-lived actinides into reactor fuel. Discharged wastes are mostly fission products with shorter half-lives. This can reduce the needed containment to 300 years versus the ...
Nuclear energy and renewable energy have reduced environmental costs by decreasing CO 2 emissions resulting from energy consumption. [2] There is a catastrophic risk potential if containment fails, [3] which in nuclear reactors can be brought about by overheated fuels melting and releasing large quantities of fission products into the ...
The removal of heat from nuclear reactors is an essential step in the generation of energy from nuclear reactions.In nuclear engineering there are a number of empirical or semi-empirical relations used for quantifying the process of removing heat from a nuclear reactor core so that the reactor operates in the projected temperature interval that depends on the materials used in the construction ...